Dairy production systems in Finland

Virkajärvi, P., Rinne M., Mononen, J., Niskanen, O., Järvenranta, K. and Sairanen, A.

Natural Resources Institute Finland (Luke)
Importance of dairy production in Finland

- Milk contributes ~40% of the agricultural gross return
- Milk sector is the 3rd largest employer in the food industry

<table>
<thead>
<tr>
<th>Gross returns</th>
<th>0</th>
<th>200</th>
<th>400</th>
<th>600</th>
<th>800</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garden production (greenhouse)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef and veal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garden production (open air)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed grain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poultry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bread grain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potatoes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil plants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar-beets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other crops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other animal products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline of the soil and climate (1)

- The agricultural area occupies only 9% of the total land area.
- Land ownership is fragmented and agricultural land is often distributed in small, unevenly shaped parcels.
Regional differences in soil properties and crop production and distribution of milk production 2013-2014 (OSF, 2015)
2. Seasonal pattern of herbage production

Global radiation (W m\(^{-2}\) d\(^{-1}\))
Growth rate (kg DM ha\(^{-1}\) d\(^{-1}\))

Mean daily air temperature (°C)

Source:
Global radiation, Temperature FMI Maaninka;
growth rate FIN Virkajärvi unpublished;
FMI growth rate IRE Corrall 1984 EGF.
2. Seasonal pattern of herbage production

Global radiation (W m\(^{-2}\) d\(^{-1}\))
Growth rate (kg DM ha\(^{-1}\) d\(^{-1}\))

Source:
Global radiation, Temperature FMI Maaninka;
growth rate FIN Virkajärvi unpublished;
FMI growth rate IRE Corrall 1984 EGF.
Outline of dairy production in Finland

- Breeds: Nordic red 59%; Holstein 40%
- Proportion of organic farming is low (2.5 %)
- Most of the feed produced on the farm (71 %)
- Grass silage: pre-wilted with additives
- Use of soya bean is minor
- Majority of the cows graze during summer (legislation) but proportion of pasture of dairy cow’s annual DM intake is low
- Finland is free from many common cattle diseases
 - enzootic bovine leucosis, brucellosis, bovine tuberculosis etc
 - Low prevalence of e.g salmonella, EHEC, mycoplasma bovis
The development of dairy production in Finland from 1980 to 2012. (OFS, 2015)

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of dairy farms (1000)</th>
<th>Number of dairy cows (1000)</th>
<th>Total milk production (million litres y(^{-1}))</th>
<th>Average milk production, l cow(^{-1})</th>
<th>Arable land, ha farm(^{-1})</th>
<th>Dairy cows farm(^{-1})</th>
<th>Dairy cows ha(^{-1}) *</th>
<th>Milk production, kg ha(^{-1}) y(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>91.3</td>
<td>719</td>
<td>3170</td>
<td>4478</td>
<td>na</td>
<td>11.5</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>1990</td>
<td>45.5</td>
<td>496</td>
<td>2730</td>
<td>5547</td>
<td>19.3</td>
<td>13.0</td>
<td>0.67</td>
<td>3700</td>
</tr>
<tr>
<td>2000</td>
<td>22.2</td>
<td>364</td>
<td>2450</td>
<td>6786</td>
<td>32.6</td>
<td>15.2</td>
<td>0.47</td>
<td>3200</td>
</tr>
<tr>
<td>2012</td>
<td>9.6</td>
<td>284</td>
<td>2230</td>
<td>7876</td>
<td>56.4</td>
<td>33.1</td>
<td>0.59</td>
<td>4600</td>
</tr>
</tbody>
</table>

• Only 10% dairy farms left in 2012 of those in 1980
• Much less decrease in total milk yield
• High production per cow but low stocking rate and thus low production per ha.
 – This diminishes the environmental impact as well

* Note: Calculated per total area occupied by the farm
The spectrum of plant species and cultivars is limited due to our climatic conditions.
Perennial rye grass in autumn and following spring
Boreal Plant Breeding, Jokioinen SW Finland

September 2013

May 2014

7200 alive individuals

155 alive individuals

Photographs ©Mika Isolahti, via Boreal Plant Breeding
Typical DM yield decrease in three forage species during successive years after establishment.

(Modified from Nissinen & Hakkola 1994).

- This is the reason for short term leys
- Mostly because of difficult winter conditions
- Mostly renovated by ploughing
- Grassland should be used in crop rotation with cereals.
Typical fertilization rates of grass in relation to DM yield

<table>
<thead>
<tr>
<th></th>
<th>Nitrogen</th>
<th>Phosphorus</th>
<th>Potassium</th>
<th>Annual DM Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha/year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum 1)</td>
<td>160 - 240</td>
<td>0 - 46</td>
<td>0 - 170</td>
<td>9 - 12 Mg/ha/y in experiments</td>
</tr>
<tr>
<td>In farm surveys 2)</td>
<td>150 - 160</td>
<td>15</td>
<td>66</td>
<td>5.5 Mg/ha/y</td>
</tr>
<tr>
<td>Farm gate balance 3)</td>
<td>107</td>
<td>12</td>
<td>na</td>
<td></td>
</tr>
</tbody>
</table>

Reasons for low DM yield on farms:

- Extra area act as a buffer in difficult years
- Area based subsidies
- Administrative area demand per LU (fixed ratio for herds > 30 LU)

1) Finnish Agri-Environmental Scheme 2015
2) ProAgria Field Parcel registry 2014, n= 16 100 parcels in years 2005-2012
3) Virtanen & Nousiainen 2005
Environmental impact

<table>
<thead>
<tr>
<th>Share (%) of total</th>
<th>Agriculture</th>
<th>Dairy</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>N load</td>
<td>50%</td>
<td>na</td>
<td>NO$_3$ directive applies the whole country, but NO$_3$ not an serious issue</td>
</tr>
<tr>
<td>P load</td>
<td>60%</td>
<td>na</td>
<td>Important, Most of P is in dissolved form</td>
</tr>
<tr>
<td>GHG</td>
<td>9%</td>
<td>2.5%</td>
<td>Originating especially from organic soils</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>90%</td>
<td>30%</td>
<td>Low proportion of agricultural land</td>
</tr>
</tbody>
</table>

- Low proportion of agricultural land and low LU/ha reduces impact
- Local and regional problems do occur
- 50 % of precipitation falls as snow – a peak in surface runoff period in spring

Huhtanen et al. 2(009). MTT No 138.
Note

- No permanent grassland (only 4%)
- No perennial ryegrass
- No lucern
- No maize
- No white clover
- Very little annual grassland
- Grazing only 6% of energy intake of dairy cows
Economy of dairy production

- Milk price +22% higher than average of EU-15 during 2000-2013
 - a result of high value products
- Production costs are one of the highest in Europe
 - especially labour and machinery
 - Labour input is high 207 h/cow/year (NL & DK 34- 52 H/cow/year)
- Profitability ratio 0.40-0.67 (EU -27 average 0.49-0.73)
 - Large variation between farms
- Construction of new barns is capital intensive
Import and export of dairy products

- Import has increased during recent years
- 2014: Export markets: Russia (48% of total dairy exports)
- 2015: Exports to Russia are banned -> forced to find new markets,
 - Such as low margin milk powder (WMP, SMP)
 - Average producer price - 15% if compared 1-5/2014 and 1-5/2015
- Not only because of Russia
- Price still higher than EU average, but production cost remain high, which cause...
Challenges and possible solutions

| Maintaining profitability | • Increase in farm size without over-indebtsness
| | • There are many farms that have a high profitability |
| To get new, young farmers to choose dairying as a profession | • Inspiring examples of others
| | • AMS systems etc. to reduce labour demand/ to change nature of the work |
| Combining economy with environmental and ethical challenges | • Water protection measures must be tailored for dairy production
| | • Consumers opinion (diet, animal rights) |
| Protein demand (No GMO) | • New species, such as Broad bean (Vicia faba) in addition to rape seed meal |
| Climate change | • There are several adaptation measure to utilize positive effects of CC
| | • Very large variation in among current scenarios |
Thank you!