Opportunities for high-resolution remote sensing to monitor grasslands

Lammert Kooistra¹, Marston Franceschini¹, Gustavo Togeiro De Alckmin^{1, 2}, Harm Bartholomeus¹, Tom Hardy¹, Sebastiaan Richter³ & Clara Berendonk³

- 1: Laboratory for Geo-information Science and Remote Sensing, WUR;
- 2: Discipline of Geography and Spatial Sciences, University of Tasmania;
- 3: Versuchs- und Bildungszentrum Landwirtschaft Haus Riswick, Kleve, Germany.

Management of production grasslands

- Dairy farming: high-production grasslands-> 5 cuts/year
- Developments towards precision management
- Need for spatio-temporal information:
 - When to harvest
 - Where to harvest
- Relevant grassland traits:
 - Quantity: biomass, height, ...
 - Quality: protein (~N), ...

Lolium perenne dominant grassland species for production

Remote sensing of grasslands

Several studies: retrieval of grassland traits

- Mainly statistical models: VIs + multi-variate
- Weather (temperature + rainfall) driver of production and composition
 - One general retrieval model over growing season possible?
- Requirements for precision management:
 - Continuous monitoring: combi of satellite and UAV
 - Forecasting?

Research Objectives

- Identification of relevant spectral regions within VNIR for monitoring of grassland traits (biomass and proteins) over the growing season
- Development of grassland trait retrieval models which are scale-able:
 - Over time: robust for varying weather conditions
 - Over different platforms: from UAV to satellite
- To support future precision management and grass growth models

Grassland fertilization experiment

Long-term grassland experiment Landwirtschaft Kamer Haus Riswick Kleve, Germany (situation 2017) Background: RGB Hymsy, Aug 30, 2017

ectors

nspectors

Grassland traits for 2017

height fresh yield dry matter content dry matter yield nitrogen content nitrogen yield protein fibre

dry matter yield, dt/ha

crude protein, %

Mean trait variation over season

WAGENINGEN UNIVERSITT

UAV based imaging spectroscopy

- Octocopter Aerialtronics
- Comparison two camera's
- Sunny conditions + 8 GCPs
- Reference panel

Processing steps according to camera specific processing chain:

- Radiometric correction
- Empirical Line Correction
- Structure from Motion
- Ortho per band + DSM
- Statistical analysis:
- Selection of pixels from ROI per plot
- Calculation of VIs and PLS
- Training and validation (40%) set

raining and valuation

VAGENINGEN UNIVERSITY WAGENINGEN UR

Rikola camera

1Mpix frame camera with adjustable spectral filter Fabry-Perot interferometry filter 30 bands selected in range of 550-900 nm; FWHM 10 nm GPS: accuracy 4m Weight: 600 g Processing:

Processing: Roosjen et al. (2016)

Hyperspectral Mapping System (HYMSY) Pushbroom spectrometer: Photonfocus SM2-D1312 + Specim ImSpector V10 2/3" 450-950nm; FWHM 9nm; 20 lines/s Consumer RGB camera GPS/INS accuracy: 4m / 0.25° Weight: 2 kg Processing: Suomalainen et al. (2015)

HRW Grassland experiment Aug 30 2017

False colour composite

DSM

@Rikola
 Frame|FPI
0.031m; 400-900nm
 [sel. 30 bands]

DH

@HYMSY Pushbroom 0.140 m; 0.012 m 450-900 nm; [5 nm]

Ultra-high resolution orthomosaic

15 m

Sensor comparison [30-Aug-2017]

Composite

CI rededge (~CCC)

WDVI (~FBM)

WAGENINGEN UNIVERSITY WAGENINGEN UR

Evaluation of VIs for trait retrieval (HYMSY)

								$\begin{array}{r} => 0.7 \\ => 0.6 & \& < 0 \\ => 0.4 & \& < 0 \\ => 0.1 & \& < 0 \end{array}$
	May		August		October		All	< 0.1
Ranking	Calibration	Validation	Calibration	Validation	Calibration	Validation	Calibration	Validation
Height	LCI	MTCI	SR2	SR2*	TCARI/OSAVI	LCI	GNDVI	GNDVI
FBM	MTCI	MTCI	MCARI/OSAVI	TCARI/OSAVI	TCARI/OSAVI	TCARI/OSAVI	MTCI	MTCI
DBM	NDRE	GNDVI	MCARI/OSAVI	MCARI/OSAVI	TCARI/OSAVI	TCARI/OSAVI	LCI	LCI
DBM%	CIred-edge	MTCI	TCARI/OSAVI	TCARI/OSAVI	GNDVI	TCARI/OSAVI	REP	SIPI
Ν	GNDVI	MTCI	NDVI3	NDVI3*	MCARI/OSAVI	TCARI/OSAVI	MTCI	MTCI
N%	MTCI	MTCI	/	MTCI	SR2	TCARI/OSAVI	NDVI3	NDVI3
fiber	MTCI	MTCI	NDVI3	TCARI/OSAVI	/	/	SR2	SR2
Ash	CI _{red-edge}	MTCI*	NDVI3	1	MCARI/OSAVI	MCARI/OSAVI	NDV13	SR2

Color code R-squared value

Grass trait maps Fresh Biomass (HYMSY)

@HYMSY and PLSR – Traits estimates

In the meantime in Tasmania!

Pasture Biomass: Canopy Height or Vegetation Indices?

- Perennial Ryegrass: 900 samples biomass/spectra /canopy height collected in Tasmania - AUS.
- Data Collection Period: 1 year.
- Instrument: FieldSpec Handheld 2 / Plate Meter / MicaSense Parrot Sequoia.
- Research Goal: Plate Meter vs. Vegetation Indices (VIs) ?
- Applied Goal: Pasture Biomass sensor.

How similar are Vegetation indices?

- Examining 97 indices more than 80% present a high degree of correlation.
 - In other words, they are **redundant**!
- We can filter out indices which are extremely similar.
- Next question is: which group of indices work better?
- What is the trade-off by not including one less index?

Correlation cut-off levels

Vegetation Indices: which ones? Trade-offs.

Findings

- There is no single silver bullet index. There are indices which perform as well or better than RPM (~ 450 kg.DM.ha⁻¹)
- A group of indices do a better job explaining pasture biomass.
- Adding a lot of redundant indices does not improve your ability to predict biomass.
- Depending on the level of accuracy desired, a small number of indices is sufficient (4 VIs ~350 kg.DM.ha⁻¹).

G.T. Alckmin *, L. Kooistra , A. Lucieer, R. Rawnsley. FEATURE FILTERING AND SELECTION FOR DRY MATTER ESTIMATION ON PERENNIAL RYEGRASS: A CASE STUDY OF VEGETATION INDICES.

Conclusions

- Grassland traits show large variation over season: variation in best VI based retrieval model
- Multi-variate PLS model provides best retrieval model over whole season: but portability between seasons
- HYMSY and Rikola comparable: Rikola higher detail and spectrally and geometrically more stable (to be continued)

Outlook:

- Extend to complete Rikola dataset and combine with grassland production model -> Spectors: Marston
- Scaling to larger dataset (Ger, NL, Aust) -> PhD Gustavo
- Scaling to satellite products -> Spectors: Tom

WAGENINGEN UNIVERSITY WAGENINGEN UR

Thank you for your attention

Lammert Kooistra

Wageningen University and Research The Netherlands E-mail: lammert.kooistra@wur.nl Website: www.wur.eu/uarsf