Perspectives of predicting grass growth by modelling and measuring grass yield

Workshop NVWV

Sept 18th 2019, Idse Hoving, Johan van Riel, Gertjan Holshof and Gerbert Roerink

Questions to answer, what are we searching for?

- How many grass is available?
- How much will grow in the coming days?
- When do I have to mow or graze?
- "Grip on grass"; more control over the entire roughage process

Objectives?

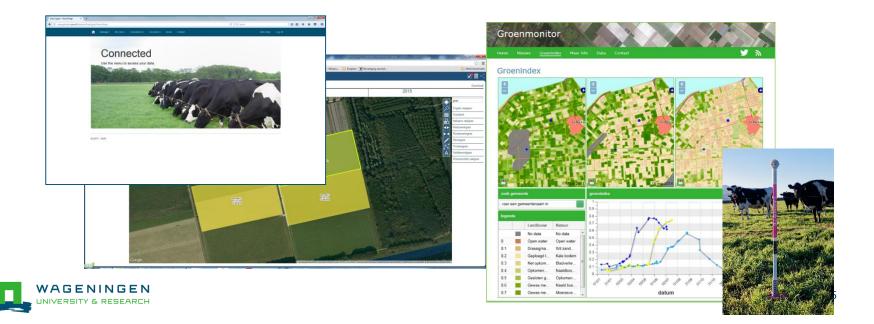
To know the actual yield and nutritional value of grass
➢ Higher fresh grass uptake by cows during grazing
➢ Realizing the desired feed quality (mowing)
➢ Overview at company level (how much and where)
➢ Good grassland planning (predicting growth)

Ambitions

1.Advice on parcel level and local spots

2.Advice on a daily basis

3.Based on current measurements and predictions (near future)



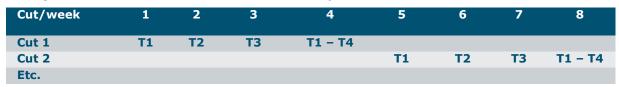
1. Grass growth prediction as a basis2. Refinement with sensor measurements

Different projects, one research route

- Predicting grass growth
 - (Amazing Grazing)
- Measuring grass yield
 - (Precision farming 2.0)
- Measuring and predicting N-delivery soil and protein content of grass
 - (PPS DISAC N-sensor)

DISAC

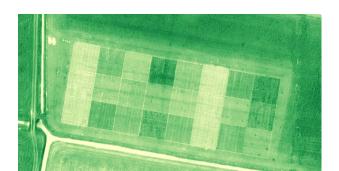
Experiment (mowing trial)


- Focused on both growth prediction and reflection measurements
- Targeting for 'ground truth' measurements. The aim was to have a broad measuring range on one specific moment to relate spectral images to DM yield
- Grass height measurements as reference (known in practice)

Experimental design

- The experiment was setup on a Dutch clay, sand and peat soil.
- A factorial combination of **nitrogen** fertilization (0, 180 and 360 kg ha.⁻¹jaar⁻¹) and **grass growth intervals** were provided to create various yield stages.
- The total number of plots was 24 per location (3 nitrogen levels * 4 growth intervals per cut * 2 repetitions).
- The 4 growth intervals existed of 3 interim trimmings (weekly, each on 6 plots) and a 'final' cut of all 24 plots.

The number of final cuts per location was 5 (clay and peat) to 6 (sand) and covered the entire growing season.



Measurements

- At the moment of final cut (T4), a day before harvest, light reflectance was measured with a calibrated Cropscan Multispectral Radiometer (MSR87, MSR16R).
- The clay (2016 2017) and peat (2017) locations were measured in 16 bands between 460 - 1080 nm.
- The sand location was measured in 8 bands between 460 and 810 nm, whereby 5 bands were corresponding with bands of the 16 bands Cropscan.
- On clay location additional measurements with an eBee drone were carried out
- Grass height (Jenquip EC09)

Grass growth model

- GRAS2007, a stochastic model of Wageningen Livestock Research
- N-uptake prediction from different N-sources:
 - delivery of the soil
 - chemical fertilizer
 - manure
 - unutilized nitrogen from a previous cut
- Correction for soil moisture availability. The relative crop yield (Yact/Ypot) is set equal to relative transpiration (Tact/Tpot)
- Use of Irrigation Signal of ZLTO with soil moisture balance model of WLR

Reflection measurements

- Images in different bands (blue, green, red, nir) for incoming and reflected light.
- Translation to crop reflection per band (%).
- Red gives the most absorption and near infrared (NIR) gives the most reflection.
- Crop indexes such as NDVI or WDVI are calculated from the ratio between reflections.
- These can be a measure of biomass or crop characteristics such as nitrogen content

Translation reflection measurements

- Which vegetation index has the best relationship with yield and N content?
- Mostly developed for grain or potatoes
- How accurate is the relationship for grass?
- Vegetation indexes
- Individual wave lengths?
- Many indexes ...

WAGENINGEN
UNIVERSITY & RESEARCH

Index	Formulation	Reference
REP	$(((R_{\rm 070}+R_{\rm 700})/2\cdotR_{\rm 700})/(R_{\rm 740}\cdotR_{\rm 700}))^*40+R_{\rm 700}$	(Guyot and Baret 1988)
MTCI	$(R_{754} - R_{700})/(R_{700} - R_{401})$	(Dash and Curran 2004)
MCARI/OSAVI	$(((R_{700} \text{ - } R_{670})\text{- } 0.2^{*}(R_{700} \text{ - } R_{550}))^{*}(R_{700}/R_{670}))/(1.16^{*}(R_{800} \text{ - } R_{670})/(R_{800} \text{ + } R_{670} \text{ + } 0.16))$	(Daughtry, Walthall et al. 2000)
MCARI/OSAVI RE	$(((R_{750} \text{ - } R_{705})\text{- } 0.2^{*}(R_{750} \text{ - } R_{550}))^{*}(R_{750}/R_{705}))/(1.16^{*}(R_{750} \text{ - } R_{705})/(R_{750} \text{ + } R_{705} \text{ + } 0.16))$	(Wu, Niu et al. 2008)
TCARI/OSAVI	$((R_{700} - R_{670}) - 0.2^*(R_{700} - R_{550})^*(R_{700}/R_{670}))^* 3/(1.16^*(R_{800} - R_{670})/(R_{400} + R_{670} + 1.16))$	(Haboudane, Miller et al. 2002)
TCARI/OSAVI RE	$((R_{750} - R_{705}) - 0.2^* (R_{750} - R_{550})^* (R_{750} / R_{705}))^* 3 / (1.16^* (R_{750} - R_{705}) / (R_{750} + R_{705} + 1.16))$	(Wu, Niu et al. 2008)
CI red edge	(R ₇₈₀ /R ₇₀₉) - 1	(Gitelson, Keydan et al. 2006)
CI green	(R ₇₈₀ /R ₅₅₀) - 1	(Gitelson, Keydan et al. 2006)
NDNI	$(\log(1/R_{1510}) - \log(1/R_{1660}))/(\log(1/R_{1510}) + \log(1/R_{1660}))$	(Serrano, Penuelas et al. 2002)
SIPI	$(R_{800} - R_{445})/(R_{800} - R_{601})$	(Penuelas, Filella et al. 1995)
DCNI	$(R_{720} - R_{700})/(R_{700} - R_{670})/(R_{720} - R_{670} + 0.03)$	(Chen, Haboudane et al. 2010)
NDRE	$(R_{790} - R_{720})/(R_{790} + R_{720})$	(Tilling, O'Leary et al. 2007)
NDRE1	$(R_{740} - R_{705})/(R_{740} + R_{705})$	(Gitelson and Merzlyak 1994)
NDRE2	(R ₇₀₀ - R ₇₀₅)/(R ₇₀₀ + R ₇₀₅)	(Barnes, Clarke et al. 2000)
NDVI	$(R_{800} - R_{670})/(R_{800} + R_{670})$	(Rouse, Haas et al. 1974)
CCCI	$((R_{700} - R_{720})/(R_{79}0 + R_{720}))/((R_{800} - R_{670})/(R_{800} + R_{670}))$	(Barnes, Clarke et al. 2000)
WDRVI	$(0.2^*R_{000} \text{ - } R_{070})/(0.2^*R_{000} \text{ + } R_{070})$	(Gitelson 2004)

Results reflection measurements and translation to vegetation indices

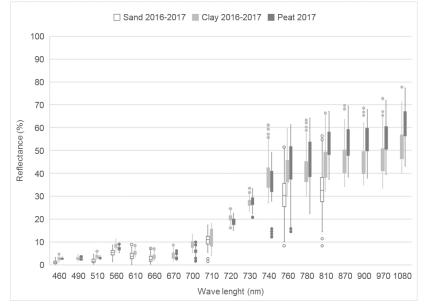


Figure 1. Percentage of light reflection per wave length per location

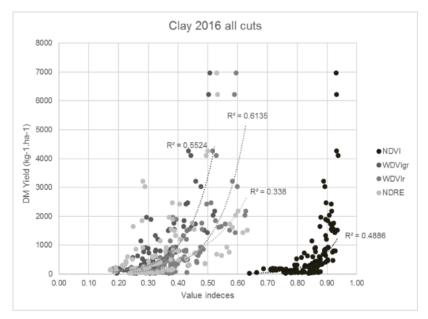


Figure 2. NDVI, WDVI green, WDVI red and NDRE plotted against DM yield for all cuts of the clay location in 2016

Variation in correlations between locations and cuts

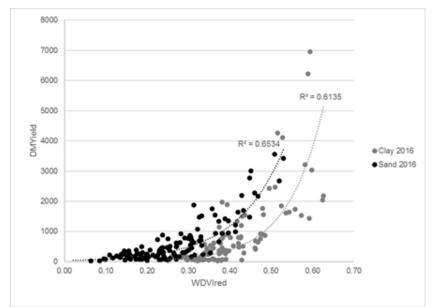


Figure 3. WDVI red plotted against DM yield for the clay and sand location

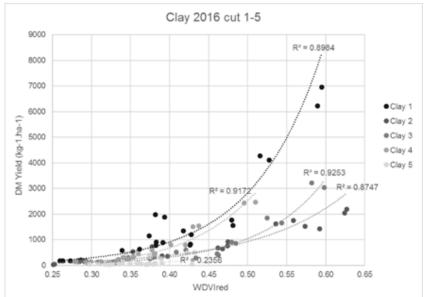
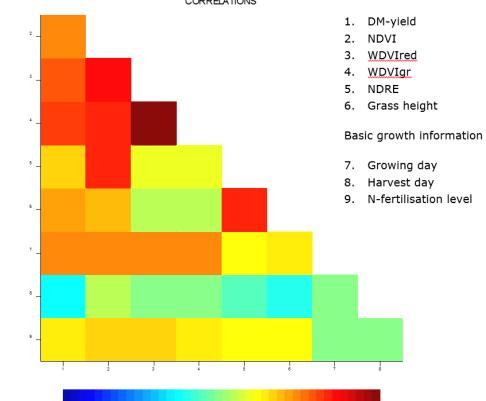



Figure 4. WDVI red plotted against DM yield per cut (1-5) for the clay location in 2016

Correlations

-0.75

-1.00

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

CORRELATIONS

WAGENINGEN INIVERSITY & RESEARCH

Statistical analyses

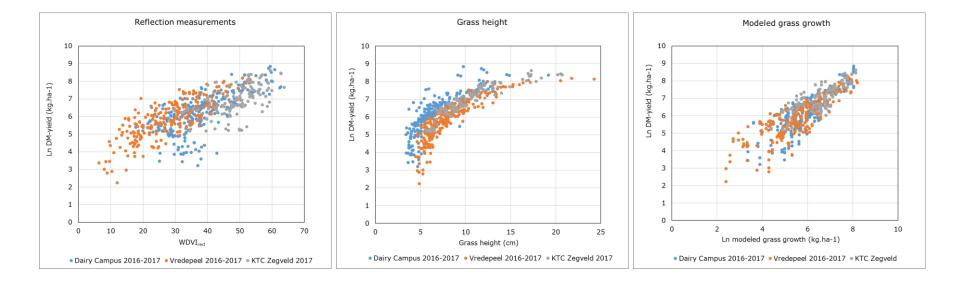
- Focused on explaining the absolute DM-yield and the N-content in fresh grass on the basis of the measurements and model-based predictions.
- The analysis was carried out on the data of the T4 harvest moments to generate separate predictive models for:
 - 1. reflection measurements
 - 2. grass height measurements
 - 3. model-based grass growth prediction
 - 4. basic growth data
- For the reflection measurements, the analyses focused on individual wavelengths and 4 general vegetation indices, namely NDVI, WDVI red, WDVI green and NDRE.

Predicting models for DM-yield and N-content

Pre	edictor
Gro	owth data
Gro	owth model
Gra	ass height
Ref	flection measurements
Gra	ass height + Growth data
Gra	ass height + Growth model
Ref	flection measurements + Grass height
Ref	flection measurements + Growth data
Ref	flection measurements + Growth model

R² and P-values DM yield

R ²	Df	560 nm	760 nm	810 nm	CIred	NDRE	NDVI	$WDVI_{gr}$	WDVIr
Single	predict	or							
54.9	2	-	-	-	-	-	-	-	< 0.001
51.2	2	-	-	< 0.001	-	-	-	-	-
50.1	2	-	< 0.001	-	-	-	-	-	-
48.4	2	-	-	-	-	-	-	< 0.001	-
39.3	2	-	-	-	-	-	< 0.001	-	-
24.6	2	-	-	-	< 0.001	-	-	-	-
18.3	2	-	-	-	-	< 0.001	-	-	-
0.01	2	0.778	-	-	-	-	-	-	-
Combiı	nation v	vith growth	data						
78.0	12	-	-	-	-	-	-	-	< 0.001
77.5	12	-	< 0.001	-	-	-	-	-	-
77.5	12	-	-	< 0.001	-	-	-	-	-
75.3	12	-	-	-	-	-	< 0.001	-	-
74.6	12	-	-	-	-	< 0.001	-	-	-
74.5	12	-	-	-	-	-	-	< 0.001	-
72.4	12	-	-	-	< 0.001	-	-	-	-
70.5	12	0.259	-	-	-	-	-	-	-



R² and P-values N content

R ²	Df	560 nm	760 nm	810 nm	CIred	NDRE	NDVI	WDVIgr	WDVIr
Single	predict	or							
7.4	2	< 0.001	-	-	-	-	-	-	-
6.3	2	-	-	-	-	-	< 0.001	-	-
4.1	2	-	-	-	-	< 0.001	-	-	-
3.4	2	-	-	-	< 0.001	-	-	-	-
2.4	2	-	-	-	-	-	-	-	< 0.001
1.7	2	-	-	-	-	-	-	0.002	-
0.8	2	-	-	0.028	-	-	-	-	-
0.7	2	-	0.049	-	-	-	-	-	-
Combir	nation v	vith growth	data						
72.7	12	< 0.001	-	-	-	-	-	-	-
71.9	12	-	-	-	-	-	< 0.001	-	-
71.6	12	-	-	-	-	< 0.001	-	-	-
71.5	12	-	-	-	< 0.001	-	-	-	-
70.6	12	-	-	-	-	-	-	-	0.032
70.6	12	-	-	0.072	-	-	-	-	-
70.5	12	-	-	-	-	-	-	0.205	-
70.4	12	-	0.375	-	-	-	-	-	-

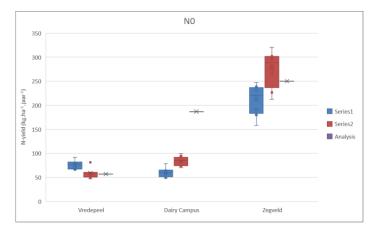
Measurements and fits

Results statistic analysis DM yield

	Locations overall 2016-2017			Dairy Ca 201	ampus (16-2017			peel (sa 16-2017		KTC Zegveld (peat) 2017			
	R2	σ2	2S	R2	σ2	2S	R2	σ2	2S	R2	σ2	2S	
Empty model	0	1.35	0.000	0	1.39	0.00	0	1.38	0.00	0	0.75	0.00	
Growth data	71	0.39	3.509	72	0.37	3.40	71	0.40	3.55	64	0.27	2.83	
Growth model	72	0.37	3.381	71	0.40	3.55	74	0.36	3.34	68	0.24	2.66	
Grass height	65	0.47	3.940	74	0.35	3.28	83	0.23	2.60	91	0.07	1.68	
Reflection measurements (WDVIred, clay 810 nm)	56	0.59	4.653	53	0.63	4.88	68	0.45	3.80	37	0.47	3.96	
Gras height + Growth data	85	0.20	2.430	87	0.19	2.37	85	0.21	2.47	92	0.06	1.64	
Grasheight + Growth model	80	0.27	2.816	80	0.28	2.86	86	0.19	2.39	91	0.07	1.68	
Reflection measurements + Grass heighthoogte	77	0.32	3.073	77	0.31	3.04	85	0.20	2.45	92	0.06	1.64	
Reflection measurements + Growth data	78	0.29	2.952	78	0.30	3.00	80	0.27	2.84	69	0.23	2.60	
Reflection measurements + Growth model	77	0.30	3.007	76	0.33	3.16	84	0.22	2.56	69	0.23	2.61	
Reflection measurements + Grass height + Growth data	87	0.18	2.325	87	0.17	2.29	87	0.18	2.35	92	0.06	1.62	

Results statistic analysis N content

	Locaties	s gezan	nenlijk	Dairy C	ampus	(klei)	Vrede	peel (Z	and)	KTC Ze	gveld (veen)
	20	16-201	7	20	16-201	7	20	16-201	7		2017	
	R2	σ2	2S	R2	σ2	2S		σ2	2S	R2	σ2	2S
Empty model	0	62.46	0.00	0	38.88	0.00	0	53.05	0.00	0	40.75	0.00
Growth data	71	17.92	8.47	72	10.92	6.61	60	21.18	9.20	49	20.70	9.10
Growth model	14	53.44	14.62	23	30.01	10.96	6	49.62	14.09	40	24.46	9.89
Grass height	5	59.60	15.44	24	29.55	10.87	12	46.78	13.68	40	24.45	9.89
Reflection measurements (WDVIred, clay 810 nm)	12	55.18	14.86	19	31.30	11.19	15	45.34	13.47	30	28.36	10.65
Gras height + Growth data	72	17.49	8.36	74	9.94	6.31	61	20.59	9.08	51	19.82	8.90
Grasheight + Growth model	14	53.53	14.63	30	27.04	10.40	12	46.59	13.65	44	22.75	9.54
Reflection measurements + Grass heighthoogte	16	52.18	14.45	35	25.30	10.06	25	39.99	12.65	42	23.55	9.71
Reflection measurements + Growth data	73	16.59	8.15	76	9.14	6.05	62	19.92	8.93	50	20.27	9.00
Reflection measurements + Growth model	22	48.76	13.97	33	26.12	10.22	21	42.13	12.98	44	22.84	9.56
Reflection measurements + Grass height + Growth data	74	15.95	7.99	81	7.57	5.50	63	19.50	8.83	52	19.73	8.88


Discussion reflection measurements

- Saturation of the signal at relatively high yields
- Influence of uncovered soil (effect unknown)
- Influence of the grass stubble that is not harvested (effect unknown)
- Under grazing conditions those effects possibly will be enhanced.
- Difference in atmospheric measurement conditions between measuring moments (noise)

Discussion growth prediction

- Incorrect estimate of the nitrogen delivery based on soil samples (DC).
- Corrected data was used for model input (N0 yield).
- Deviation in the model-based approach to nitrogen delivery (ZV).
- Large variation in measured grass yield between repetitions (VP).
- Inaccurate approach to the soil moisture status (saturated conditions).

Conclusions

- Concerning reflection measurements WDVIred was the best estimator for DM
- Across locations and years, reflection measurements and grass height as single features were not very accurate in predicting dry matter yield. The growth model performed better at this level.
- With additional use of basic growth data, both reflection measurements and grass height give 5 to 10% extra explained variance.
- Grass height measurements improved the prediction of reflection measurements and the growth model.
- There was barely no prediction for N-content
- For hydrologically complex soils, a more advanced soil moisture model is needed

Continuation experiment 2018

- A continuation of the experiment has been carried out in 2018.
- How to get a better grip on the correlation between vegetation index and DM-yield and between vegetation index and N-content?
- Additional measurements
 - Hyper spectral camera with more bands in NIR
 - Canopy, fresh mowed and dry mowed (indoor)
 - Grass performance (flowering, sward density etc.)

Application Grass Signal

- Application based on GRAS2007 and soil moisture model
- Connection of data sources via internet platform Akkerweb

	GrasSignaal Mijn	Gegevens -	Consultancy -	Exclusief	• Ove	r Co	ntact					Dag Idse!
HonePage X +												
episitenaavalitiishaavilaatiisaashaa	Bewaar Grasgroei		< Eerder	Rea	alisatie		Later >		Vandaag		Voorspe	lling
		mei										
Connected	Perceel	3 4	5 6	7 8	9	10	11 1	2 13 1	4 15-mei	16 17	18	19 20
Use the menu to access your data.	Dairy Campus K4	966 994	1026 1058	1084 1121	1171	1206	1234 12	62 1287 12	91 1320	1350 138	9 1423 1	461 1505
Particular and the second second second	Foort Driehuiserweg	1472 1502	1541 1578	1613 1663	1728	1797	1862 19	08 1949 19	55 2001	2043 209	4 2134 2	169 2213
	Foort Loenhorsterweg	1642 1677	1717 1758	1803 1861	1933	2000	2064 21	17 2175 21	2252	2322 240	9 2483 2	547 2619
	Koot achter de stal	1377 1408	1442 1478	1516 1567	1627	1684 1	1739 17	85 1834 18	10 1899	1958 203	2 2090 2	139 2194
	Koot naast het spoor	1404 1436	1470 1506	1545 1596			1770 🛛 18	17 1867 18	73 1934	1993 206		178 2234
	Liefting 1	1349 1381	1416 1452	1490 1541	1604	1662 1	1718 17	62 1801 18	07 1850	1888 193	4 1971 2	002 2041
	Liefting 2	1366 1399	1434 1471	1510 1562			1740 17	85 1824 18	31 1874	1913 196		028 2067
	Spek 1	1706 1744		1878 1940			2153 22			2424 251		650 2720
	Vredepeel Twistweg	1614 1647		1771 1830			2059 21			2303 238		539 2622
	ZV PR13	2427 2467		2622 2687			2899 29			3190 330		468 3565
	ZV PR14	1941 1975		2110 2168			2360 24			2586 266		782 2857
	ZV PR15	1329 1349		1431 1466			1584 16			1725 177		850 1898
0 2017 - WUR	ZV PR16	2427 2467	2521 2577	2622 2687	2768	2831	2899 29	64 3029 30	3108	3190 330	0 3388 3	468 3565
	Aantal koeien			82	82	82	82 8	2 82 8	2			
	Weideduur (uur/koe)			10	10	10	10 1	0 10 1	D			
	Bijvoeren (kg DS/koe)							0.0 10.0 1				

Take home message

- Combination of data sources improves yield estimation!
- Confirmation of approach:
 - Grass growth prediction as a basis
 - Refinement with sensor measurements

Thanks for the attention!

For more information:

Idse Hoving, Wageningen Livestock Research

idse.hoving@wur.nl

Sjaak van Veen, TNO

sjaak.vanveen@tno.nl

Gerbert Roerink, Wageningen Environmental Research

gerbert.roerink@wur.nl

Hein Noorbergen, NLR

hein.noorbergen@nlr.nl

