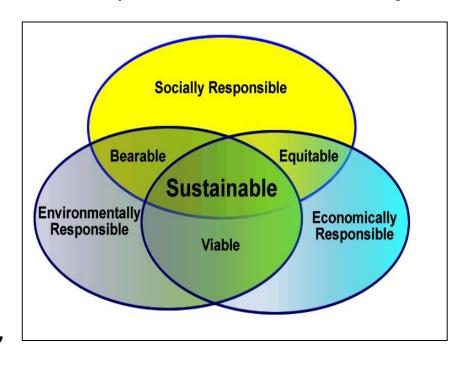
Priorities for the European R&D agenda with regard to sustainable intensification in dairy farming

EGF Congress, 15 June 2015

Ray Keatinge (Coordinator European Cattle Innovation Partnership)

Structure of presentation


- Definitions and scope
- Drivers and challenges to the EU dairy industry
- Perspectives on sustainability
- Role of science and technology
- Priorities for research and development
- Summary and conclusions in reto sustainable intensification

Some definitions

'Sustainable intensification'

- 'producing more outputs with more efficient use of all inputs on a durable basis - while reducing environmental damage and building resilience, natural capital and the flow of environmental services' (Royal Society, 2009)
- i.e. producing more, while impacting less (on finite resources of fossil, fuel, fertiliser, water, land; on GHG emissions; eutrophication, biodiversity)

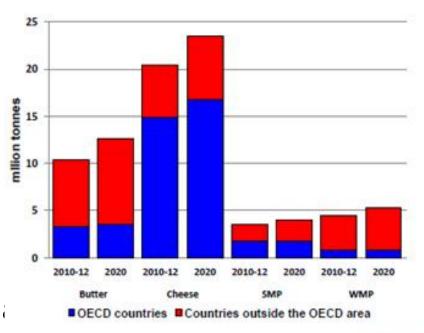
'The 3 pillars of sustainability'

Priorities for 'Research and Development (and Innovation)'

Societal challenges impacting on agriculture

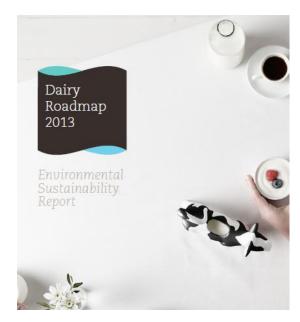
- Food security
- Efficient resource use (incl. reducing waste)
- Environmental protection
- Climate change impact
- Socially acceptable systems of livestock production
- Economic development

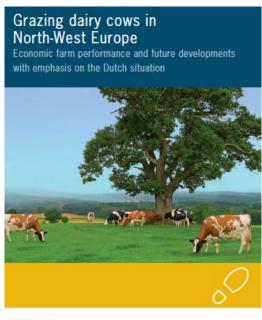
Sustainable production and consumption



from 50m to 85m Global dairy markets (2010 -20)

- Demand expected to match or exceed production
- Consumption growth
 - < 1% in traditional markets (EU, Japan, Oceania)
 - 2% in North & Central America
 - 3% China, India & Sub-Sahara
 Africa
- Competitiveness, and purchasing power, will dictate EU potential to export


Source, OECL						
Number of global middle						
class (m)						
	200	202	203			
	9	0	0			
N. America	338	333	322			
Europe	664	703	680			
Asia Pacific	525	174	322			
		0	8			

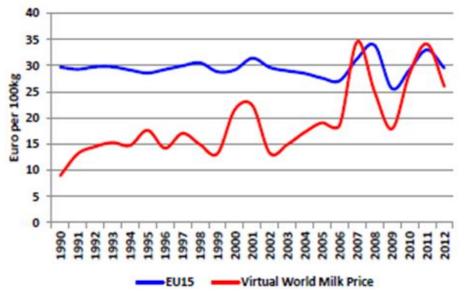

Course OECO

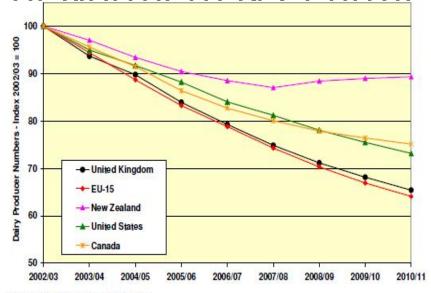
Not just supply - wider societal interest in....

Nutrition & healtonvironmental impactduction system

Scale and diversity in EU dairy farming (EU 27)

- 1.0 million dairy farmers
- 50 million hectares of land
- 23 million dairy cows
- 140 billion litres per annum
- 24% of total world dairy outp


	Ireland	GB	Poland	Slovakia
Av. yield (I)	5365	7827	5075	6024
Av. herd size	55	137	4	164
No. of dairy farms	13100	14400	656500	1100



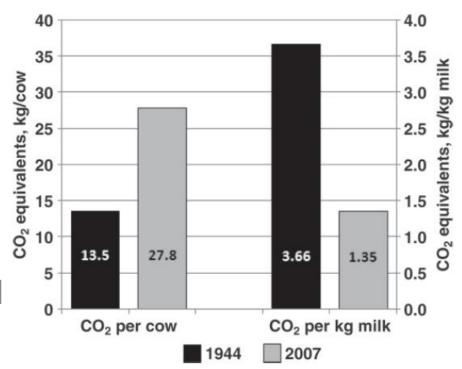
End of quota 2015

- Total EU output expected to grow by 2%-3% per annum
- Volatility in output (and input) prices will create pressure

• Significant differences between regions; Convergence of milk price Long-term decline in farmer no mountain regions areas of Northern & Central

Source: Eurostat / USDA / NZDA / CDA

Contexts for sustainable dairy production



Land sparing vs land sharing (US dairy herd output 1944 vs. 2007)

Todays herd can produce 1b kg milk, with:-

- 21% of the animals
- 35% of the water
- 10% of the land
- 24% of the manure
- 43% of the methane
- 56% of the nitrous oxid

37% of the carbon foot print

(From Capper et al, 2009)

Carbon foot print of high performing grass-based & confined systems

O' Brien et al, 2014	Grass based	Confined			
	Irish	UK	US		
Milk production (kg per cow per year)	6262	10892	12506		
Milk production (kg ECM per cow)	6695	10602	11650		
Stocking rate (Livestock Units/ha)	2.53	3.74	2.79		
Concentrate input (kg per cow per year)	320	2905	3355		
•COZiten requestrations in plusted ather grass-based system had 5% 884 lower 0398					

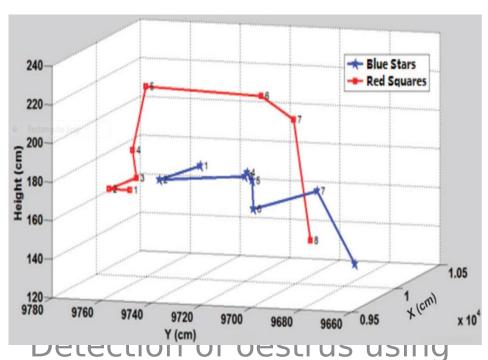
[•]in **Topd per**forming herds were 27%-32% lower in C footprint than average herds

CO ₂ eq/t ECM - no C sequestration	914	895	898
---	-----	-----	-----

Appliance of science

- Plant & animal genetics
- Precision agriculture
- Telemetry/sensing technology
- 'Big data'

Decision support

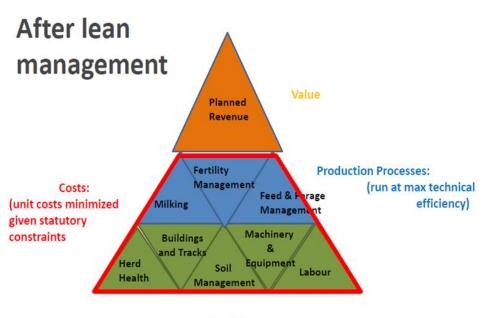


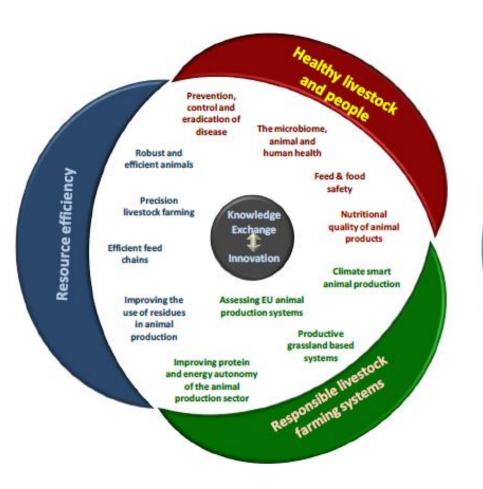
Also, the 'appliance of sense'

ultra wide band technology

- Ensuring fundamentals
- Farm and systemspecific solutions
- Key questions
 - context
 - application
 - and cost benefit

Appliance of better management approaches




 Continuous improvements in production efficiency achieved through maximising value creation, and minimising generation of waste

Before lean management **Planned** Revenue Value **Fertility** /lanagemen **Production Processes** Feed & Forage Milking Management Costs Buildings Machinery and Tracks Equipment Labour Soil Health Management

Asset Base: (maintained at max productive capacity year on year)

Recommended R&D priorities – Animal Task Force

ATF White Paper, Apr. 13

1st Addendum, Nov. 14

Sustainable intensification - top 6 priorities for research and development

Efficient and resilient feed supply

- Autonomy in protein supply
- Greater exploitation of forage components in the diet
- Optimal use of co-products/non-human edible feedstuffs

Efficient, healthy animals

- Genetic improvement for fitness traits (fertility, longevity, disease resistance/resilience)
- Feed efficiency (adapted to system and type of diet)

Sustainable intensification - top 6 priorities for research and development

Nutrient management (encompassing soil health)

- Improved nutrient management, recovery and delivery systems
- Plant breeding for improved nutrient efficiency

Further development of robust LCA methodologies

- Sustainability characteristics and outcomes of different methods of production
- Valorise ecosystem services from diverse production systems

Sustainable intensification top 6 priorities for research and development

Consumer-friendly production systems

 Design of housing systems to better meet cow comfort and behavioural needs

Socio-economic traction

- New business models to improve infrastructure & facilitate entry of younger generation into dairying
- Tools and tactics to increase farm resilience to climate and/or economic shock
- Data & systems to increase visibility on local issues & priorities to influence behaviour on sustainable production

Summary and conclusions

- Competitiveness, improved resource efficiency, environmental performance and social responsibility key to a sustainable future for dairy farming in Europe
- 'Sustainable intensification' is compatible with these goals – when interpreted in its widest context
- Mixed delivery model needed to take account of regional structural, environmental and socio-economic differences
- R&D can provide understanding of biological processes, enabling technologies and technical innovations